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Abstract. We investigate the problem of selecting an informative subsample out of a neural
network’s training data. Using the replica method of statistical mechanics, we calculate
the performance of a heuristic selection algorithm for a linear neural network which avoids
overfitting.

1. Introduction

Finding the optimal complexity of a neural network for learning an unknown task is one
of the most interesting problems in the theory of neural computation. A popular strategy is
to start with a complex network having more connections than are actually needed. Then,
after training, by deleting couplings which are too small or seem to be of less importance,
one hopes to end up with a network which has reasonable performance (see e.g. [23]).
The strategy of clipping network weights has also been investigated in the framework of
statistical mechanics (see e.g. [20, 24, 25]).

In this paper, we will look at a problem, which is in some sense dual to the problem of
pruning the network weights. We consider the problem of pruning the training examples.
Besides its interest from a purely theoretical viewpoint, such a problem is motivated from the
so-called phenomenon ofoverfitting in network learning. If the complexity of a network
is too high, it may be able to fit all training examples perfectly, but the probability of
predicting the outputs on new data may drop to the value of random guessing. As a result,
the learning curve, which displays the generalization error as a function of the number of
examples, may show a non-monotonic behaviour. This means that an increase in the number
of examples can in some regions lead to a decrease in generalization abilities.

Recently, Garces has found in numerical studies that overfitting can be avoided by
deleting examples from the training set [18]. In this respect, it is interesting to find out
from which selection of examples the performance of the network will benefit most. In this
paper, we will study a heuristic strategy for the selection of examples in the case of a linear
classifier applied to two toy problems. From an analytical viewpoint, it is simple enough
to be free of the problems of replica symmetry breaking.

This approach should not be confused with the well studied problem oflearning with
queries[14–16]. In the latter case, one selectsinputswith respect to some criterion,before
their outputs are observed. In our case, all training examples, i.e. both inputs and outputs,
are known to the learner.
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This paper is organized as follows. In the second section, we briefly review some
properties of the Adaline algorithm which will be basic to our treatment. The third section
explains the heuristic strategy for the example selection. In section four, we introduce two
different rules to be learnt by the network. Section five contains a new approach to the
statistical mechanics of the problem. Finally, in sections six and seven, the results of our
calculations are presented and discussed.

2. Adaline learning

As has been shown, e.g. in [9, 3, 22, 10], the effect of overfitting can already be observed
for the case of a simple linear classifier, the so-called Adaline model [13, 12, 21], which
we will discuss in the following sections. For anyN -dimensional input vectorξ this linear
classifier is defined by the output

S = 1√
N

J · ξ . (1)

For p linearly independent input vectorsξµ, and arbitrary real-valued target outputsSµ,
µ = 1, . . . , p, the system of equations

Sµ = 1√
N

J · ξµ (2)

will always have solutions. Hence, for random inputs, where linear dependencies are
unlikely, it will be possible to adjust the vectorJ of theN network weightsJj , j = 1, . . . , N

in such a way that ifp < N , all training examples are perfectly learnt by the network.
An explicit solution for such a weight vector is given by the pseudo-inverse solution

(PSI) [11]:

J =
αN∑

µ,ν=1

S
µ

B(C−1)µνξ
µ (3)

where Cµν = 1
N

∑
j ξ

µ

j ξ ν
j is the correlation matrix of the training patterns. Out of the

linear space of solutions to equation (2), this is the one which has minimal squared norm
q0 = J2/N .

The restriction of our treatment to the casep < N is mainly for mathematical
convenience. However, especially in this region, the effect of overfitting can be observed.

3. Weighting of examples

Our basic strategy for the selection of examples is based on the fact that most iterative
learning algorithms for a single-layer net result in a coupling vector which has the form
of a weightedHebbian rule [4, 9]. To see this, consider a learning algorithm of the
backpropagationtype which is based on the minimization of a quadratic training energy

E = 1
2

αN∑
µ=1

(S
µ

B − gJ (h
µ

J ))2 (4)

by gradient descent. Here we assume a smooth outputgJ (h
µ

J ) of the student net, which
is defined through the internal fieldhµ

J = 1√
N

J · ξµ. Hence, during a learning step, the
network couplings are changed by an amount

δJj ∝ − ∂E

∂Jj

. (5)
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It is not hard to show that the algorithm (5) forgJ (hµ) = hµ, when started with a zero
initial vector, converges to the Adaline rule (3).

To rewrite (5) as a weighted Hebbian sum, we set

δJj =
αN∑
µ=1

δxµS
µ

Bξ
µ

j (6)

where

δxµ(t) ∝
αN∑
µ=1

(1 − (S
µ

B)−1gJ )
∂gJ

∂h
µ

J

(7)

represents the weighting (in the following called the embedding strength) of theµth example
in the t th learning step.

Our selection of examples will be based on the following heuristic ansatz: intuitively,
we will expect that examples which have small or even negative total embedding strengths
xµ = ∑

t δxµ(t) after learning could be cast out of the training set. The latter would have
an output that already has the correct sign without being learnt. This strategy may also
be understood as an approximation to the AdaTron algorithm [5] which, by construction,
allows for non-negative embedding strengths only. Another possibility was discussed in a
paper by Garces [18] for the case of Adatron learning. Only examples which are not too
hard to learn, i.e. which have positive embedding strengths below a certain value, were left
in the training set.

To find an expression for the total embedding strengths, it is not necessary to solve the
dynamics (5). We can get the same information directly from the final coupling vector. For
the Adaline case, withα = p/N < 1 the form of the coupling vector (3) provides us with
an explicit expression for the embedding strengths which is given by

xµ = 1

S
µ

B

∑
ν

Sν
B(C−1)µν

valid for p < N . To treat the statistical mechanics of the problem, however, a simpler
implicit definition ofxµ using a suitable Lagrangian will be given in section 5. Although it is
possible to obtain the coupling vector of the linear classifier forα > 1, useful expressions for
the corresponding embedding strengths are harder to find and to treat within the framework
of statistical mechanics. Hence, we will restrict ourselves to the regionα < 1.

In order to keep the subsequent analysis simple, we will not assume that the Adaline
algorithm has to be rerun for a second time on the reduced training set. We will rather
make the ansatz, that the new weight vector is givena priori via single-shot learning by a
weighted Hebbian sum of the form

J̃ = 1√
N

∑
µ

f (xµ)S
µ

Bξµ . (8)

In the following, we will consider two choices for the weighting functionf (x). One choice
will be called themodified Adalinerule f (x) = x2(x), where examples with negative
embedding strengths are abandoned, and the positive ones keep their original weights. This
may be considered as an approximation to the more complicated algorithm of relearning
the remaining examples with the Adaline method. For comparison, we will also study the
simpler choicef (x) = 2(x) (modified Hebbian rule), where the remaining examples have
equal weights.
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4. Learning tasks

As in most theoretical studies of neural networks, the task to be learnt will be defined by
a teacher network. It provides the correct outputsSB for a given inputξ. For the simplest
case, the teacher is given by a single layer network with a fixed vector of couplingsB and
output

SB = gB(hB) (9)

with hB = 1√
N

B · ξ. The complexity of such teacher networks can be tuned by suitably
varying the output functiongB . In all the following cases, an explicit mismatch between
teacher and student is assumed by chosinggB as a nonlinear function. For simplicity, we
specialize on the binary caseg2

B = 1. Hence, even when the teacher problem is of the
simple typegB(h) = sign(h), the linear output function of the student used for the training
process will cause overfitting. For better comparison with the teacher net, we will measure
the performance of the student network after training by its clipped output sign(hJ ). Hence,
we define the generalization error as the following average:

εg = 1
2〈|gB(hB) − sign(hJ )|〉ξ . (10)

In the simplest case, where the inputs are drawn from a spherically symmetric density,

f (ξ) = (2π)−N/2e− 1
2 |ξ|2

it is possible to describe the generalization error in terms of the angleφ between the two
vectorsB and J̃ .

φ = B · J̃

|J̃ | · |B| = R̃/
√

q̃0 .

Here R̃ = B · J̃/N defines the overlap between teacher and student, andq̃0 = J̃2/N . For
simplicity, we have chosen the norm of the teacher to be

√
N .

We will investigate two different rules.
(i) We begin with a linearly separable task, defined by a teacher perceptron with a

non-zero thresholdτ . The output function is

gB(hB) = sign(hB − τ) .

The shaded regions in figure 1 display the fraction of input space where the answers from
teacher and student differ. The generalization error can be easily calculated to be

εg = 1

π
cos−1

(
R̃√
q̃0

)
+

τ∫
0

Dh

28

 R̃h√
q̃0 − R̃2

 − 1

 (11)

where Dh is the Gaussian measure:

Dh = dh√
2π

e−h2/2 and 8(x) =
x∫

−∞
Dh.

(ii) The second rule is the so-called reversed-wedge problem [19]:

gB(hB) = sign(hB(hB − τ)2) .
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The shaded regions in figure 2 display in the same way as before the fraction of input
space where the answers from teacher and student differ. The generalization error can be
calculated similarly:

εg = 1

π
cos−1

(
R̃√
q̃0

)
+ 2

τ∫
0

Dh

28

 R̃h√
q̃0 − R̃2

 − 1

 . (12)

Figure 1. Geometry of input space for perceptron with
threshold.

Figure 2. Geometry of input space for reversed-wedge
problem.

5. Statistical mechanics: a Lagrangian approach

Following the approach of Elizabeth Gardner [1, 2], the application of statistical mechanics
to network learning (for a review see [6–8]) is often based on the fact that the network
configurationsJj obtained from a learning algorithm are minima of a suitable training
energyE. In this case, by introducing a canonical ensemble of networks at temperature
β−1, the desired configuration appears as the one with maximal weight in the partition
function Z = ∫

dJ e−βE , in the limit β → ∞.
This procedure works fine [3], e.g. in order to determine the order parameters of the

standard Adaline rule, which are explicit functions of the couplings. However, it does
not give us any direct information on the embedding strengths, which are only implicitly
related to the couplings. One possibility to obtain these quantities would be to introduce
their explicit definitions withinδ functions, see e.g. [17]. In our paper, we will use a
new, technically more elegant, approach which is based on a Lagrangian formulation of the
optimization problem rather than on a HamiltonianE.

We will make explicit use of the fact that the coupling vector is the solution of the
following constrained optimization problem: minimize12J2 under the constraints

1/
√

N J · ξµ = S
µ

B ∀µ .

By introducing Lagrange parametersxµ together with the Lagrange function

L(J , {Sµ

Bxµ}) = 1
2J2 −

∑
µ

S
µ

Bxµ

(
1√
N

J · ξµ − S
µ

B

)
(13)

we can solve the optimization problem by finding the point in(N + P)-dimensional space
of Jj ’s andxµ’s whereL is stationary. Setting the partial derivative ofL with respect to
the Jj ’s equal to zero, we see that

J = 1√
N

∑
µ

xµS
µ

Bξµ . (14)
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Thus, thexµ’s actually coincide with the embedding strengths. However, the stationary
point of L is a saddle point, not a minimum. In order to keep integrals finite, we will work
with the following complex partition function:

Z =
∫ ∏

j

dJj

∏
µ

dyµ exp
[−βL(J , {iyµ}] . (15)

Using the saddle-point method, by suitably deforming the contour of integration of theyµ’s,
we find that in the limitβ → ∞, the dominant contribution toZ comes from the stationary
point of the LagrangianL.

Using the complex distribution inZ, we are able to calculate any average of functions
of the embedding strengths by identifyingyµ with −iSµ

Bxµ at the saddle point. We are
particularly interested in the distributionW(J̃l) of an arbitrary component of the new
student vectorJ̃l({xµ}). This enables us to calculate the order parameters necessary to
describe the generalization ability of a network with the new couplingsJ̃l . The characteristic
function ω̃(k) = 〈

eikJ̃l ({xµ})〉
ξ

of this random variable is expressed as a further average over
the complex distribution defined by the partition function (15). We will denote this average
by 〈· · ·〉β and get

ω̃(k) = lim
β→∞

〈〈
exp

[
ikJ̃l

({
i
yµ

S
µ

B

})] 〉
β

〉
ξ

(16)

= lim
β→∞

〈
Z−1

+∞∫
−∞

∏
j

dJj

∏
µ

dyµ√
2π

exp

(
− β

2
J2+iβ

∑
µ

yµ

(
1√
N

J · ξµ−S
µ

B

)
+ikJ̃l

)〉
ξ

.

(17)

Introducingn replicas and the local field of the teacher, we see that in then → 0 limit only
the lth component of the student vector contributes:

ω̃(k) = lim
β→∞, n→0

〈 +∞∫
−∞

∏
a

dJla

∏
µ,a

dya
µ√

2π

∏
µ

dhµ dvµ

2π
exp

(
− β

2

∑
a

J 2
la − iβ

∑
µ,a

gB(hµ)ya
µ

−i
∑

µ

hµvµ+ i√
N

∑
µ

ξ
µ

l

(
β

∑
a

Jlay
a
µ + Blv

µ+kf

(
iyb

µ

gB(hµ)

)
gB(hµ)

))〉
ξ

.

After averaging and introducing appropriate order parameters, assuming replica
symmetry, we obtain in the limitn → 0

ω̃(k) = exp

(
−k2

2
A + ikBlb

)
(18)

with A = αF + 2α2γG/δ − α3Qγ 2/δ2 and b = αT − α2γU/δ. These constants are
defined by the following order parameters, which again can be calculated within the replica
framework:

Qab = 〈
yayb

〉
F =

〈
f 2

(
iy

gB(h)

)
g2

B(h)

〉
Gab =

〈
iyaf

(
iyb

gB(h)

)
gB(h)

〉
U = 〈yv〉 (19)

S = 〈
iygB(h)

〉
T =

〈
ivf

(
iy

gB(h)

)
gB(h)

〉
.
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Finally, γ = β(Gaa − Gab) andδ = 1 + αβ(Qaa − Qab).

Explicit expressions for these quantities are given in appendix B. By a Fourier transform
of (18) we obtain the Gaussian distribution

W(J̃l) = 1√
2πA

exp

(
− (J̃l − Blb)2

2A

)
. (20)

Hence, using the self-averaging property of order parameters, the overlap of the new weight
vector with the teacher and the corresponding norm are given by

R̃ = 1

N

N∑
l=1

〈J̃l〉Bl = b

and

q̃0 = 1

N

N∑
l=1

〈J̃ 2
l 〉 = A + b2 .

Using these order parameters, the generalization error for the different tasks of section 4
can be calculated from the results of section 4.

Figure 3. Distribution of embedding strengths for signum teacher with thresholdτ = 0. (a)
Theoretical results forα = 0.4, 0.6, 0.8, 0.9 (upper to lower curves), (b) theoretical results
(broken) and simulations (histogram) forα = 30

321, (c) same as (b) but for α = 180
321.
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Figure 4. Relative sizeαeff = p′/N of
the pruned training set, versus relative size
α = p/N of the original training set for
(a) perceptron with thresholdτ (full curve,
τ = 0; broken curve,τ = 2.4) and (b)
reversed-wedge problem (full curve,τ = 0;
broken curve,τ = 1.2).

6. Results

In this section we present the learning curves of our algorithms applied to the learning tasks
of section 4.

For both learning tasks, the distributionP(x) of embedding strengths (see figure 3
and appendix A) broadens asα increases and shows an increasing fraction of negativexµ.
Hence, using our algorithm, a mostly increasing fraction of examples, which approaches1

2
asα → 1, will be cast out of the training set. In figure 4, we have displayed the relative
number of remaining examplesαeff = p′/N examples, for both learning tasks. Here

αeff = α

+∞∫
0

P(x) dx .

Figure 5 shows the generalization error for the modified Adaline algorithm with weight
function f (x) = x2(x), learning a perceptron with thresholdτ . The broken curve was
obtained for the standard Adaline algorithm, where forα → 1 only the trivial generalization
εg = 1

2 is achieved. Obviously, by selecting examples, this overfitting phenomenon vanishes.
The little symbols on the curves are results of numerical simulations of the algorithm. Since
the modified algorithm achieves smaller errors than the minimum of the broken curve, it
performs better than an Adaline algorithm applied to a random selection ofαeffN examples.
It is interesting to note that both̃R and q̃0 diverge forα → 1 as in the case of normal
Adaline learning [3]. The ratiõR/

√
q̃0, however, which enters the formulae forεg, remains

finite.
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Figure 5. Generalization error for modified Adaline algorithm (full curves) compared with
regular Adaline (broken curves). Task: perceptron with threshold. The symbols with error bars
represent results achieved by a perceptron withN = 321 input units averaged over 100 draws
of different learning sets.

Figure 6. Same as in figure 5, but for the reversed-wedge problem.

For the same task, figure 7 shows the result for the modified Hebb methodf (x) = 2(x).
This yields, except forα close to 1, a slight reduction of performance compared to the
modified Adaline case. The broken curves are the results for Hebbian learning of arandom
selection of the same number of examplesp′ = αeffN . However, both sets of curves are
displayed as functions of the initial sizeα of the training set. This comparison again proves
that the selected examples contain more information about the learning task than a random
subset of examples.

Figures 6 and 8 display the performance of the algorithms in the case of the reversed-
wedge problem. The overall behaviour is roughly the same as in the case of the threshold
perceptron.
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Figure 7. Generalization error for modified Hebb learning (full curves). Task: a perceptron
with threshold. The broken curves show regular Hebb learning using arandom selection of
p′ = αN examples. Simulations are done analogously to figure 5.

Figure 8. Same as in figure 7, but for the reversed-wedge problem. In most cases the modified
Hebb rule achieves better results than the modified Adaline algorithm except for the realizable
problemτ = 0.

7. Conclusion

Using statistical mechanics, we have analysed a simple strategy for pruning the training set
of examples in the case of a linear classifier network. By rewriting the coupling vector as a
Hebbian sum, the natural concept of the weight of an example is introduced. Deleting the
examples with negative weights from the training set avoids the overfitting phenomenon.
By using different weight functionsf (x), our analysis might be extended to other types
of example selections, e.g. erasing the ones which are too hard to learn [18]. In this case,
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we expect that the network’s performance will benefit most from such a procedure whenα

is sufficiently larger than 1. However, such an analysis requires a different mathematical
treatment than that of section 5. Further, it might be interesting to see whether similar
strategies can be developed for more complicated networks.
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Appendix A. Distribution of embedding strengths

In this appendix we will briefly derive the calculation of the distribution of embedding
strengthsxµ. Defining the characteristic function

ω(k) = 〈
eikxν

〉
ξ

= 〈
lim

β→∞
〈
e−kyν/S

ν
B

〉
β

〉
ξ

(A1)

and introducing replicas one gets

ω(k) = lim
β→∞,n→0

〈 +∞∫
−∞

∏
j,a

dJja

∏
µ,a

dya
µ

∏
µ

dhµ dvµ

2π

× exp

(
−β

2

∑
j,a

J 2
ja − i

∑
µ

hµvµ + i√
N

∑
µ,j

ξ
µ

j

(
β

∑
a

Jjay
a
µ + Bjv

µ

)

− kyb
ν

gB(hν)
− iβ

∑
µ,a

ya
µg(hµ)

)〉
ξ

.

Upon averaging over the inputs and defining order parametersRa = 〈
BJa

〉
andqab = 〈

JaJb

〉
,

we obtain in replica symmetry

ω(k) = lim
β→∞,n→0

+∞∫
−∞

∏
µ

Dhµ
∏
µ,a

dya
µ exp

(
−β

2
χ

∑
µ,a

(ya
µ)2

−β2

2
(q − R2)

∑
µ

(∑
a

ya
µ

)2

+ i
∑
µ,a

ya
µ (Rhµ − gB(hµ)) − kyb

ν

gB(hν)

)

= lim
β→∞

+∞∫
−∞

Dh Dz exp

(
k2

βχg2
B(h)

+ ik

χ

(
1 − Rh

gB(h)

)
− i

kz
√

q − R2

χgB(h)

)
with χ = β(q0 − q). Assuming binary outputs,|gB(h)| = 1 this finally yields

P(x) = χ√
2π(q − R2)

+∞∫
−∞

Dh exp

(
−

(
1 − χx − RhgB(h)

)2

2(q − R2)

)
. (A2)

The order parametersR andq0 can be obtained by the techniques introduced in [3, 10] and
read

R = α

+∞∫
−∞

Dh hgB(h) q0 = α
∫ +∞
−∞ Dh g2

B(h) − R2

1 − α
(A3)
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for α < 1. Explicit results for continuous functionsgB(h) are given in [10].
Finally, the parameterχ can be determined using equation (3) together with (A2)

q0 = 1

N
J2 = 1

N

∑
µ,ν

gB(hν)(C−1)µνgB(hµ) = 1

N

∑
µ

g2
B(hµ)xµ

= α

∫ ∞

−∞
dx xP (x) . (A4)

In the last equality, we have specialized on binary outputs only. Calculating the integral
with the help of (A2) and comparing with (A3) leads toχ = 1 − α.

Appendix B. Order parameters

The explicit results for the order parameters (19) are:

Q = − 1

χ2

+∞∫
−∞

Dh Dz
(
Rh − gB(h) + z

√
q − R2

)2

U = − 1

χ

+∞∫
−∞

Dh hgB(h)

δ = 1 + α

χ
,

γ = − 1

χ

+∞∫
−∞

Dh Dz f ′
(

−Rh − gB(h) + z
√

q − R2

χgB(h)

)

F =
+∞∫

−∞
Dh Dz g2

B(h)f 2

(
−Rh − gB(h) + z

√
q − R2

χgB(h)

)

G = − 1

χ

+∞∫
−∞

Dh Dz gB(h) (Rh − gB(h)) f

(
−Rh − gB(h) + z

√
q − R2

χgB(h)

)
− q − R2

χ
γ

T =
+∞∫

−∞
Dh Dz hgB(h)f

(
−Rh − gB(h) + z

√
q − R2

χgB(h)

)
− R γ .

The parametersQ andU depend only on the learning task and are independent of the choice
of the weight functionf (x).

(i) Perceptron with threshold

Q = −q + 1 − 2R
√

2/π exp
(−τ 2/2

)
χ2

U = −
√

2

π

1

χ
exp

(
−τ 2

2

)
.

(B1)

(ii) Reversed-wedge problem

Q = −q + 1 − 2R
√

2/π
[
2 exp

(−τ 2/2
) − 1

]
χ2
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U = −
√

2

π

1

χ

[
2 exp

(
−τ 2

2

)
− 1

]
.

For modified Hebbian learningf (x) = 2(x) we get:

F =
+∞∫

−∞
Dh g2

B(h)8

−gB(h) (Rh − gB(h))√
g2

B(h)(q − R2)


γ = − 1√

2π(q − R2)

+∞∫
−∞

dh√
2π

√
g2

B(h) exp

(
− qh2

2(q − R2)
+ RhgB(h)

q − R2
− g2

B(h)

2(q − R2)

)

G = − 1

χ

+∞∫
−∞

Dh gB(h) (Rh − gB(h)) 8

−gB(h) (Rh − gB(h))√
g2

B(h)(q − R2)

 − q − R2

χ
γ

T =
+∞∫

−∞
Dh hgB(h)8

−gB(h) (Rh − gB(h))√
g2

B(h)(q − R2)

 − Rγ .

In a similar way we are able to obtain the parameters for modified Adaline learning,
i.e. f (x) = x2(x):

F =
+∞∫

−∞
Dh

(Rh − gB(h))2 + q − R2

χ2
8

−gB(h)(Rh − gB(h))√
g2

B(h)(q − R2)


−

√
q − R2

√
2πχ2

+∞∫
−∞

dh√
2π

gB(h)(Rh − gB(h))√
g2

B(h)

× exp

(
− qh2

2(q − R2)
+ RhgB(h)

q − R2
− g2

B(h)

2(q − R2)

)

γ = − 1

χ

+∞∫
−∞

Dh 8

−gB(h)(Rh − gB(h))√
g2

B(h)(q − R2)


T =

+∞∫
−∞

Dh
hgB(h) − R(h2 − 1)

χ
8

−gB(h)(Rh − gB(h))√
g2

B(h)(q − R2)


+

√
q − R2

χ

+∞∫
−∞

dh

2π

hgB(h)√
g2

B(h)

exp

(
− qh2

2(q − R2)
+ RhgB(h)

q − R2
− g2

B(h)

2(q − R2)

)
.
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